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Tradeoffs between synchronization, communication, and work in parallel
linear algebra computations

Edgar Solomonik, Erin Carson, Nicholas Knight, and James Demmel

Department of EECS, University of California, Berkeley

January 25, 2014

Abstract

This paper derives tradeoffs between three basic costs of a parallel algorithm: synchronization, data movement, and computational
cost. Our theoretical model counts the amount of work and data movement as a maximum of any execution path during the parallel
computation. By considering this metric, rather than the total communication volume over the whole machine, we obtain new insight
into the characteristics of parallel schedules for algorithms with non-trivial dependency structures. The tradeoffs we derive are lower
bounds on the execution time of the algorithm which are independent of the number of processors, but dependent on the problem size.
Therefore, these tradeoffs provide lower bounds on the parallel execution time of any algorithm computed by a system composed of any
number of homogeneous components each with associated computational, communication, and synchronization payloads. We first state
our results for general graphs, based on expansion parameters, then we apply the theorem to a number of specific algorithms in numerical
linear algebra, namely triangular substitution, Gaussian elimination, and Krylov subspace methods. Our lower bound for LU factorization
demonstrates the optimality of Tiskin’s LU algorithm [24] answering an open question posed in his paper, as well as of the 2.5D LU [20]
algorithm which has analogous costs. We treat the computations in a general manner by noting that the computations share a similar
dependency hypergraph structure and analyzing the communication requirements of lattice hypergraph structures.

1 Introduction
We model a parallel machine as a network of processors which communicate by point-to-point messages. This model has three basic
architectural parameters,

• α – network latency (time) for a message between a pair of processors,

• β – time to inject a word of data into (or extract it from) the network,

• γ – time to perform a floating point operation on local data,

which are associated with three algorithmic costs,

• S – number of messages sent (network latency cost / synchronization cost),

• W – number of words of data moved (bandwidth cost / communication cost),

• F – number of local floating point operations performed (computational cost).

We describe our execution schedule model and show how S, W , and F are measured in any schedule in Section 2. Each quantity
is accumulated along some path of dependent executions in the schedule. The sequence of executions done locally by any processor
corresponds to one such path in the schedule, so our costs are at least as large as those incurred by any single processor during the
execution of the schedule. The parallel execution time of the schedule is closely proportional to these three quantities, namely,

max(S · α,W · β, F · γ) ≤ execution time ≤ S · α+W · β + F · γ.

Since our analysis will be asymptotic, we do not consider overlap between communication and computation and are able to measure the
three quantities separately. Our model is similar to the LogP model [7] with L = α, o = g = β, and no network capacity constraint.

Our theoretical analysis also precludes recomputation within a parallelization of an algorithm, as we associate an algorithm with a
set of vertices, each of which is a computation, and assign them to unique processors. However, a parallel algorithm which employs
recomputation has a different dependency graph structure, to which our analysis may subsequently be applied. While there are many
existing parallel algorithms for the applications we explore that employ recomputation, to the best of our knowledge none of them
perform less communication than ascribed by the recomputation-excluding lower bounds we present.

We reason about parallel algorithms by considering the dependency graphs of certain computations. We will first derive theoretical
machinery for obtaining lower bounds on dependency graphs with certain expansion parameters and then show how this result yields
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lower bounds on S,W,F for several algorithms in numerical linear algebra with common dependency structures. Most of our lower
bounds apply to computations which have Ω(nd) vertices, with a d-dimensional lattice dependency structure, and take the form

F · Sd−1 = Ω
(
nd
)
, W · Sd−2 = Ω

(
nd−1

)
.

These bounds indicate that a growing amount of local computation, communication, and synchronization must be done to solve a
larger global problem. Thus, the bounds are important because they highlight a scalability bottleneck dependent only on local proces-
sor/network speed and independent of the number of processors involved in the computation.

In particular, we show:

• For solving a dense n-by-n triangular system by substitution (TRSV),

FTRSV · STRSV = Ω
(
n2
)
,

• For Gaussian elimination (GE) of a dense n-by-n matrix,

FGE · S2
GE = Ω

(
n3
)
, WGE · SGE = Ω

(
n2
)
,

• For computing an (s+ 1)-dimensional Krylov subspace basis with a (2m+ 1)d-point stencil (defined in Section 6.3),

FKr · SdKr = Ω
(
md · sd+1

)
, WKr · Sd−1

Kr = Ω
(
md · sd

)
.

The lower bounds which we derive in this paper establish the communication optimality of the parallel algorithms for LU factorization
given by Tiskin [16] and Solomonik and Demmel [20]. The parallel schedules for LU and QR in these papers are parameterized and
exhibit a trade-off between synchronization and communication bandwidth cost. Our paper answers an open question posed by Tiskin at
the end of [24], showing that it is not possible to achieve an optimal bandwidth cost for LU factorization without an associated increase
in synchronization cost (within the limits of our assumptions).

In [20], a lower bound proof was given which demonstrated this trade-off for LU factorization. However, the proof argument in [20]
did not consider the possibility of overlap between the communication necessary to factorize each block, and therefore was incorrect.
This paper extends the idea of this tradeoff to a more general theoretical context, and presents a significantly corrected proof in this
new framework. We show that Gaussian elimination is just one of many numerical algorithms whose dependency structure necessitates
the tradeoff. In particular, we conjecture that our results extend to other dense matrix factorizations such as QR, problems in dynamic
programming, and certain graph algorithms.

2 Previous work
Theoretical lower bounds on communication volume and synchronization can be parameterized by a local/fast memory of size M .
Most previous work has considered the total sequential or parallel communication volume Q, which corresponds to the amount of
data movement across the network (by all processors), or through the memory hierarchy. Hong and Kung [14] introduced sequential
communication volume lower bounds for computations including n-by-n matrix multiplication, QMM = Ω(n3/

√
M), the n-point

FFT, QFFT = Ω(n log(n)/ log(M)), and the d-dimensional diamond DAG (a Cartesian product of line graphs of length n), Qdmd =
Ω(nd/M1/(d−1)). Irony et al. [13] extended this approach to distributed-memory matrix multiplication on p processors, obtaining the
bound WMM = Ω(n3/p

√
M). Aggarwal et al. [1] proved a version of the memory-independent lower bound WMM = Ω(n3/p2/3), and

Ballard et al. [2] explored the relationship between these memory-dependent and memory-independent lower bounds. Ballard et al. [3]
extended the results for matrix multiplication to Gaussian elimination of n-by-n matrices and many other matrix algorithms with similar
structure, finding

WGE = Ω

(
n3

p
√

min(M,n2/p2/3)

)
.

Bender et al. [5] extended the sequential communication lower bounds introduced in [14] to sparse matrix vector multiplication.
This lower bound is relevant to our analysis of Krylov subspace methods, which essentially perform repeated sparse matrix vector
multiplications. However, [5] used a sequential memory hierarchy model and established bounds in terms of memory size and track
(cacheline) size, while we focus on interprocessor communication.

Papadimitriou and Ullman [17] demonstrated tradeoffs for the 2-dimensional diamond DAG (a slight variant of that considered
in [14]). They proved that the amount of computational work Fdmd along some execution path (in their terminology, execution time) is
related to the communication volume Qdmd and synchronization cost Sdmd as

Fdmd ·Qdmd = Ω
(
n3
)

and Fdmd · Sdmd = Ω
(
n2
)
.

These tradeoffs imply that in order to decrease the amount of computation done along the critical path of execution, more communication
and synchronization must be performed. For instance, if an algorithm has ‘execution time’ cost of Fdmd = Ω(nb), it requires Sdmd =
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Ω(n/b) synchronizations and a communication volume of Qdmd = Ω(n2/b). The tradeoff on Fdmd · Sdmd is a special case of the
d-dimensional bubble latency lower bound tradeoff we derive in the next section, with d = 2. This diamond DAG tradeoff was also
demonstrated by Tiskin [22].

Bampis et al. [4] considered finding the optimal schedule (and number of processors) for computing d-dimensional grid graphs,
similar in structure to those we consider in Section 6. Their work was motivated by [17] and took into account dependency graph
structure and communication, modeling the cost of sending a word between processors as equal to the cost of a computation.

We will introduce lower bounds that relate synchronization to computation and data movement along dependency paths. Our work
is most similar to the approach in [17]; however, we attain bounds on W (the parallel communication volume along some dependency
path), rather than Q (the total communication volume). Our theory obtains tradeoff lower bounds for a more general set of dependency
graphs which allows us to develop lower bounds for a wider set of computations.

3 Theoretical model
We first introduce of the mathematical notation we will employ throughout this and later sections

• Sets are defined as uppercase letters (S, V ).

• Vectors are defined as lowercase boldface letters (v) and the ith element of v is indexed as vi.

• Accordingly, matrices and tensors are defined as uppercase boldface letters (A,T), with elements Aij , Tijk.

• Functions and maps will be defined as Greek letters (σ(n)).

• Open/closed intervals in R are denoted (a, b) and [a, b].

The dependency graph of a program is a directed acyclic graph (DAG) G = (V,E). The vertices V = I ∪ Z ∪ O correspond to
either input values I (the vertices with in-degree 0), or the results of (distinct) operations, in which case they are either temporary (or
intermediate) values Z, or outputs O. There is an edge (u, v) ∈ E ⊂ V × (Z ∪ O) for each operand u of each operation v. These
edges represent data dependencies, and impose limits on the parallelism available within the computation. For instance, if G = (V,E)
is a line graph with V = {v1, . . . , vn} and E = {(v1, v2), . . . , (vn−1, vn)}, the computation is entirely sequential, and a lower bound
on the execution time is the time it takes a single processor to compute F = n − 1 operations. Using graph expansion and hypergraph
analysis, we will derive lower bounds for computation and communication for dependency graphs with certain properties. Then we will
show that these lower bounds can be applied to several important problems in numerical linear algebra. These lower bounds have the
form of tradeoffs between data transfer and synchronization cost and between work and synchronization cost, and form a conceptual
communication wall which limits parallelism.

A parallelization of an algorithm corresponds to a coloring of its dependency graph, i.e., a partition of the vertices into p disjoint
sets V =

⋃p
i=1 Ci, where processor i for i ∈ {1, . . . , p} computes Ci ∩ (Z ∪ O). We require that in any parallel execution among p

processors, at least two processors compute b|Z ∪ O|/pc elements; this assumption is necessary to avoid the case of a single processor
computing the whole problem sequentially (without parallel communication). Any vertex v of color i (v ∈ Ci) must be communicated
to a different processor j if there is an edge from v to a vertex in Cj (though there need not necessarily be a message going directly
between processor i and j, as the data can move through intermediate processors). We define each processor’s communicated set as

Ti = {u : (u,w) ∈ [(Ci × (V \ Ci)) ∪ ((V \ Ci)× Ci)] ∩ E} .

We note that each Ti is a vertex separator in G between Ci \ Ti and V \ (Ci ∪ Ti). For each processor i, a communication schedule,
{mi, {Rij}, {Fij}, {Mij}}, defines a sequence of mi time-steps. The time-steps may differ from processor to processor and relate to
each other only via explicit communication in the schedule. At time-step j ∈ {1, . . . ,mi}, processor i receives a set of values Rij ⊂ V
(which are packed in one message and originate from a single processor), performs a computation (or no computation) Fij ⊂ V ,
|Fij | ≤ 1, and sends a set of values Mij ⊂ V (which are also packed in one message and have a single destination processor). If both
Rij andMij are empty, no communication or synchronization is done by processor i at time-step j. Similarly, if Fij = ∅, no computation
is done by processor i at time-step j. We require that communication is point-to-point, so each message Mij must be received on some
unique processor k at some time-step l, that is Rkl = Mij . The schedule must perform all computations Ci =

⋃mi

j=1 Fij and the
messages sent and received by each processor i must include their communicated set Ti ⊂

⋃mi

j=1Mij ∪ Rij (a processor may send and
receive values not in its communicated set in order to avoid synchronization of other processors). Further, the schedule should respect
dependencies, that is, for each f ∈ Fij and each (u, f) ∈ E, if u ∈ Ci then u ∈ Fik for some k ∈ {1, . . . , j − 1}, and if u /∈ Ci, we
require that u ∈ Rik for some k ∈ {1, . . . , j}. Any value sent, ∀u ∈ Mij , must either be an input (u ∈ Ci ∩ I) or must have been
previously received or computed by that process, which means there exists k ∈ {1, . . . , j} such that u ∈ Fik or u ∈ Rik.

An execution of a parallel algorithm is associated with a communication schedule which can be represented by the weighted DAG
Ḡ = (V̄ , Ē). For each processor i ∈ {1, . . . , p} and time-step j ∈ {1, . . . ,mi}, we include vertex (i, j) ∈ V̄ . The graph includes
0-weighted edges ((i, k), (i, k + 1), 0) ∈ Ē for k ∈ {1, . . . ,mi − 1} (corresponding to sequentially executed computations Fik and
Fi,k+1). The graph also includes unit-weighted edges, ((i, j), (k, l), 1) ∈ Ē, for each nonempty message pair, ∅ 6= Mij = Rkl, where
i, k ∈ {1, . . . , p}, i 6= k, j ∈ {1, . . . ,mi}, l ∈ {1, . . . ,mk}.
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We measure the execution costs by considering all execution paths Π that exist in the communication schedule DAG Ḡ: each
execution path π ∈ Π is of the form π = {(i1, j1), . . . , (in, jn)} where for each k ∈ {1, . . . , n − 1}, ((ik, jk), (ik+1, jk+1), w) ∈ Ē
and w ∈ {0, 1}. Since any two computations on π happen either on the same processor or follow a series of messages, the time to
execute a path is a lower bound on the total execution time. The computation cost corresponds to the longest unweighted path through
the schedule, i.e.,

F = max
π∈Π

∑
(i,j)∈π

|Fij |.

Note that this value is greater than or equal to the work done by any single processor, i.e., for all i, F ≥
∑
j |Fij | = |Ci|. The bandwidth

cost of the communication schedule corresponds to the maximum vertex-weighted path through the schedule, with each vertex weighted
by the size of the messages Mij and Rij , i.e.,

W = max
π∈Π

∑
(i,j)∈π

|Mij |+ |Rij |.

Similarly, the bandwidth cost is at least as large as that incurred by any single processor, i.e., for all i, W ≥
∑
j |Mij | + |Rij |.

Accordingly, the latency cost corresponds to the longest edge-weighted path through the schedule. Defining the edge-to-weight mapping
ω̂(u, v) = w for each (u, v, w) ∈ Ē, the maximum weighted path in the schedule is given by

S = max
{(i1,j1),...,(in,jn)}∈Π

n−1∑
k=1

ω̂ ((ik, jk), (ik+1, jk+1)) .

Our goal will be to lower bound the bandwidth and latency costs for any parallelization and communication schedule of a given depen-
dency graph.

4 General lower bound theorem via bubble expansion
In this section, we introduce the concept of dependency bubbles and their expansion. Bubbles represent sets of interdependent compu-
tations, and their expansion allows us to analyze the cost of computation and communication for any parallelization and communication
schedule. We will show that if a dependency graph has a path along which bubbles expand as some function of the length of the path,
any parallelization of this dependency graph must sacrifice synchronization or incur higher computational and data volume costs, which
scale with the total size and cross-section size (minimum cut size) of the bubbles, respectively.

4.1 Bubble expansion
Given a dependency graph G = (V,E), we say vn ∈ V depends on v1 ∈ V if and only if there is a path P ⊂ V connecting v1 to
vn, i.e., P = {v1, . . . , vn} such that {(v1, v2), . . . , (vn−1, vn)} ⊂ E. We denote a sequence of (not necessarily adjacent) vertices
{w1, . . . , wn} a dependency path, if for i ∈ {1, . . . , n− 1}, wi+1 is dependent on wi.

The (dependency) bubble around a dependency path P connecting v1 to vn is a sub-DAG β(G,P) = (Vβ , Eβ) where Vβ ⊂ V ,
each vertex u ∈ Vβ lies on a dependency path {v1, . . . , u, . . . , vn} in G, and Eβ = (Vβ × Vβ) ∩ E. This bubble corresponds to all
vertices which must be computed between the start and end of the path. Equivalently, the bubble may be defined as the union of all paths
between v1 and vn.

4.2 Lower bounds based on bubble expansion
A 1

q -balanced vertex separator Q ⊂ V of a graph G = (V,E) splits V \ Q = V1 ∪ V2 so that min(|V1|, |V2|) ≥ b|V |/qc and
E ⊂ (V1 × V1) ∪ (V2 × V2) ∪ (Q × V ) ∪ (V × Q). We denote the minimum size |Q| of a 1

q -balanced separator Q of G as χq(G). If
β(G,P) is the dependency bubble formed around path P , we say χq(β(G,P)) is its cross-section expansion.

Definition 4.1 We call a directed-acyclic graph G a (ε, σ)-path-expander if there exists a dependency path P in the graph G
and a positive integer constant k � |P| such that every subpath R ⊂ P of length |R| ≥ k has bubble β(G,R) = (Vβ , Eβ) with
cross-section expansion χq(β(G,R)) = Ω(ε(|R|)) for any real constant q � |P|, q > 2, and bubble size |Vβ | = Θ(σ(|R|)), for
some real-valued functions ε, σ which for real numbers b ≥ k are positive and increasing with 1 ≤ ε(b + 1) − ε(b) ≤ cεε(b) and
1 ≤ σ(b+ 1)− σ(b) ≤ cσσ(b) for some positive real constants cε, cσ � |P|.

Theorem 4.1 (General bubble lower bounds). Suppose a dependency graph G is a (ε, σ)-path-expander about dependency path P .
Then, for any parallelization ofG in which no processor computes more than half of the vertices of β(G,P), and for any communication
schedule, there exists an integer b ∈ [k, |P|] such that the computation (F ), bandwidth (W ), and latency (S) costs incurred are

F = Ω (σ(b) · |P|/b) , W = Ω (ε(b) · |P|/b) , S = Ω (|P|/b) .
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Figure 1: Illustration of the construction in the proof of Theorem 4.1 in the case of a diamond DAG (e.g., [17]), depicting a dependency
path, and communication and computation chains about that path, for a 2-processor parallelization.

Proof. We consider any possible parallelization, which implies a coloring of the vertices of G = (V,E), V =
⋃p
i=1 Ci, and show

that any communication schedule {mi, {Rij}, {Fij}, {Mij}} for i ∈ {1, . . . , p}, j ∈ {1 . . . ,mi}, corresponding to the communication
schedule graph Ḡ = (V̄ , Ē), as defined in Section 3, incurs the desired computation, bandwidth, and latency costs. Our proof technique
works by defining a chain of bubbles within G in a way that allows us to accumulate the costs along the chain.

The tradeoff between work and synchronization, F = Ω(σ(b) · |P|/b) and S = Ω(|P|/b), can be derived by considering a compu-
tation chain: a sequence of monochrome bubbles along P , each corresponding to a set of computations performed sequentially by some
processor (see computation chain in Figure 1). However, to obtain the bandwidth lower bound, we must instead show that there exists a
sequence of bubbles in which some processor computes a constant fraction of each bubble; we then sum the bandwidth costs incurred
by each bubble in the sequence. We show a communication chain (a sequence of multicolored bubbles) for a diamond DAG in Figure 1.

Every subpath R ⊂ P of length |R| ≥ k induces a bubble β(G,R) = (Vβ , Eβ) of size |Vβ | = Θ(σ(|R|)). The Θ-notation implies
that there exists a positive finite constant d� |P| such that for all |R| ≥ k,

σ(|R|)/d ≤ |Vβ | ≤ d · σ(|R|).

We also fix the constant
q = max

{
d2(cσ + 1) + 1, d · σ(k)

}
;

note that q � |P|, since k, d, cσ, σ(k)� |P|.
We define the bubbles via the following procedure, which partitions the path P into subpaths by iteratively removing leading sub-

paths. Assume we have defined subpaths Rj for j ∈ {1, . . . , i − 1}. Let the tail (remaining trailing subpath) of the original path
be

Ti = P \
i−1⋃
j=1

Rj =
{
t1, . . . , t|Ti|

}
.

Our procedure defines the next leading subpath of length r, Ri = {t1, . . . , tr}, k ≤ r ≤ |Ti|, with bubble β(G,Ri) = (Vi, Ei).
Suppose processor l computes t1. The procedure picks the shortest leading subpath of Ti of length r ≥ k which satisfies the following
two conditions, and terminates if no such path can be defined.

Condition 1: The subset of the bubble that processor l computes, Cl ∩ Vi, is of size at least |Cl ∩ Vi| ≥ b|Vi|/qc

Condition 2: The subset of the bubble that processor l does not compute, Vi \ Cl, is also of size at least |Vi \ Cl| ≥ b|Vi|/qc

Let c be the number of subpaths the procedure outputs for the given parallelization of G and T = P \
⋃c
j=1Rj = {t1, . . . , t|T |} be

the tail remaining at the end of the procedure. We consider the two cases, |T | = Ω(|P|) and
∑
j |Rj | = Ω(|P|), at least one of which

must hold. We show that in either case, the theorem is true for some value of b.
If |T | = Ω(|P|) (the tail is long), we show that Condition 1 must be satisfied for any leading subpath of T . Our proof works by

induction on the length of the leading subpath k ≤ r ≤ |T |, with the subpath given by Kr = {t1, . . . , tr}. We define the bubble about
Kr as β(G,Kr) = (Vr, Er). When r = k, Condition 1 is satisfied because |Vr|/q ≤ d · σ(k)/q ≤ 1 and processor l computes at least
one element, t1.

For r > k, we have

|Vr| ≤ d · σ(r) ≤ d(cσ + 1) · σ(r − 1) ≤ q − 1

d
· σ(r − 1).

Further, by induction, Condition 1 was satisfied forKr−1 which implies Condition 2 was not satisfied forKr−1 (otherwise the procedure
would have terminated with a path of length r− 1). Now, using bounds on bubble growth we that since Condition 2 was not satisfied for
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Kr−1, Condition 1 has to be satisfied for the subsequent bubble, Kr,

|Cl ∩ Vr| ≥ |Cl ∩ Vr−1| ≥ |Vr−1| −
⌊
|Vr−1|
q

⌋
≥ q − 1

q
|Vr−1| ≥

q − 1

dq
σ(r − 1) ≥ 1

q
|Vr| ≥

⌊
|Vr|
q

⌋
,

so Condition 1 holds for Kr for r ∈ {k, . . . , |T |}. Further, since the tail is long, |T | = Ω(|P|), due to Condition 1, processor l must
compute

F ≥
⌊
|Vβ(G,T )|/q

⌋
= Ω(σ(|T |))

vertices. Since, by assumption, no processor can compute more than half of the vertices of β(G,P), we claim there exists a subpath Q
of P , T ⊂ Q ⊂ P , where processor l computes

⌊
|Vβ(G,Q)|/q

⌋
vertices and does not compute

⌊
|Vβ(G,Q)|/q

⌋
vertices. The path Q may

always be found to satisfy these two conditions simultaneously, since we can grow Q backward from T until Condition 2 is satisfied,
i.e., processor l does not compute at least b|Vβ(G,Q)|/qc vertices, and we will not violate the first condition that (|Cl ∩ Vβ(G,Q)| ≥
b|Vβ(G,Q)|/qc, which holds for T , due to bounds on growth of |Vβ(G,Q)|. The proof of this assertion is the same as the inductive proof
above which showed that Condition 1 holds onKr. So, processor l must incur a communication cost proportional to a 1

q -balanced vertex
separator of β(G,Q) with sizeW = Ω(ε(|Q|)) = Ω(ε(|T |)). Since these costs are incurred along a path in the schedule consisting of the
work and communication done only by processor l, the bounds hold for b = |T | (note that Ω(|P|/|T |) = Ω(1), because |T | = Ω(|P|)).

In the second case,
∑
j |Rj | = Ω(|P|), the procedure generates subpaths with a total size proportional to the size of P . For each

i ∈ {1, . . . , c}, consider the time-step m during which processor l computed the first vertex t1 on the pathRi, that is, (l,m) ∈ V̄ where
l ∈ {1, . . . , p} and m ∈ {1 . . .ml}, such that Flm = {t1} (recall that each process computes at most one vertex every time-step). We
choose the smallest s ≥ m such that Cl ∩ Vi ⊂

⋃s
m′=m Flm′ (processor l computes its part of Vi between time-steps m and s). Now

consider the time-step v on processor u, (u, v) ∈ V̄ , during which the last vertex tr on the path Rj was computed, that is, (u, v) ∈ V̄
where u ∈ {1, . . . , p} and v ∈ {1, . . . ,mu}, such that Fuv = {tr}. Note that for some z ∈ Vi, Fls = {z}, (otherwise, s can be
taken to be to s − 1, and so is not the smallest) and tr is dependent on z (tr is dependent on all vertices in the bubble). So, there
will be an execution path πi = {(l,m), . . . , (l, s), . . . , (u, v)} ⊂ V̄ in the communication schedule. This path has outgoing messages
{Mlm, . . . ,Mls, . . . ,Muv} and incoming messages {Rlm, . . . , Rls, . . . , Ruv} that include all vertices in Vi which processor l must
communicate to compute Vi ∩ Cl, which is given by the set

T̂il = {u : (u,w) ∈ [(Cl × (Vi \ Cl)) ∪ ((Vi \ Cl)× Cl)] ∩ Ei} ,

which is a separator of β(G,Ri) and is 1
q -balanced due to Conditions 1 and 2 in the definition of Ri. We use the lower bound on the

minimum separator of a bubble to obtain a lower bound on the size of the communicated set for processor l in the ith bubble,

|T̂il| ≥ χq(β(G,Ri)) = Ω (ε(|Ri|)) ,

where we are able to bound the growth of β(G,Ri), since |Ri| ≥ k. There exists a dependency path between the last element ofRi and
the first ofRi+1 since they are subpaths of P , so every bubble β(G,Ri) must be computed entirely before any members of β(G,Ri+1)
are computed. Therefore, there is an execution path πcritical ⊂ V̄ in the communication schedule which contains πi ⊂ πcritical as a subpath
for every i ∈ {1, . . . , c}. Communication and computation along πcritical can be bounded below by

F =
∑

(i,j)∈πcritical

|Fij | ≥
c∑
i=1

1

q
|β(G,Ri)| = Ω

(
c∑
i=1

σ(|Ri|)

)
,

W=
∑

(i,j)∈πcritical

|Mij |+ |Rij | ≥
c∑
i=1

χq(β(G,Ri))= Ω

(
c∑
i=1

ε(|Ri|)

)
.

Further, since each bubble contains vertices computed by multiple processes, between the first and last vertex on the subpath forming
each bubble, a network latency cost of at least one must be incurred per bubble, therefore,

S ≥= Ω(c).

Because σ(b+ 1)−σ(b) ≥ 1 for b ≥ k ≥ |Ri|, and the sum of all the lengths of the subpaths is bounded (
∑
i |Ri| ≤ |P|), the above

lower bounds for F and W are minimized when allRi are of the same length1. Picking this length as b, that is |Ri| = b = Θ(|P|/c) for
all i, leads to a simplified form for the bounds,

F = Ω (σ(b) · |P|/b) , W = Ω (ε(b) · |P|/b) , S = Ω (|P|/b) .

1This mathematical relation can be demonstrated by a basic application of Lagrange multipliers.
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Corollary 4.2 (d-dimensional bubble lower bounds). Let P be a dependency path in G, such that every subpath R ⊂ P of length
|R| ≥ k, where k � |P|, has bubble β(G,R) = (Vβ , Eβ) with cross-section expansion χq(β(G,R)) = Ω(|R|d−1) for any constant
2 ≤ q � |P| and bubble size |Vβ | = Θ(|R|d), for an integer 2 ≤ d � k. The computation, bandwidth, and latency costs incurred
by any parallelization of G in which no processor computes more than half of the vertices of β(G,P), and with any communication
schedule, must obey the relations

F · Sd−1 = Ω
(
|P|d

)
, W · Sd−2 = Ω

(
|P|d−1

)
.

Proof. This is an application of Theorem 4.1 with ε(b) = bd−1 and σ(b) = bd. The theorem yields

F = Ω
(
bd−1 · |P|

)
, W = Ω

(
bd−2 · |P|

)
, S = Ω (|P|/b) .

These equations can be manipulated algebraically to obtain

F · Sd−1 = Ω
(
|P|d

)
, W · Sd−2 = Ω

(
|P|d−1

)
.

5 Lower bounds on lattice hypergraph cuts
For any hypergraph H = (V,E), we say a hyperedge e ∈ E is internal to some V ′ ⊂ V if e ⊂ V ′. If no e ∈ E is adjacent to (i.e.,
contains) a v ∈ V ′ ⊂ V , then say V ′ is disconnected from H . A 1

q -balanced (hyperedge) cut of is a subset of E whose removal from
H partitions V = V1 ∪ V2 with min(|V1|, |V2|) ≥ 1

q |V | such that all remaining (uncut) hyperedges are internal to one of the two parts.
We define a d-dimensional lattice hypergraph H = (V,E) of breadth n, with |V | =

(
n
d

)
vertices and |E| =

(
n
d−1

)
hyperedges.

Each vertex is represented as vi1,...,id = (i1, . . . , id) for {i1, . . . , id} ∈ {1, . . . , n}d with i1 < · · · < id. Each hyperedge connects all
vertices which share d − 1 indices, that is ej1,...,jd−1

for {j1, . . . , jd−1} ∈ {1, . . . , n}d−1 with j1 < · · · < jd−1 includes all vertices
vi1,...,id for which {j1, . . . , jd−1} ⊂ {i1, . . . , id}. There are n−(d−1) vertices per hyperedge, and each vertex appears in d hyperedges.
Each hyperedge intersects (d− 1)(n− (d− 1)) other hyperedges, each at a unique vertex.

A key step in the lower bound proofs in [13] and [3] was the use of an inequality introduced by Loomis and Whitney [15]. We will
use this inequality (in the following form) to prove a lower bound on the cut size of a lattice hypergraph.

Theorem 5.1 (Loomis-Whitney). Let V be a set of d-tuples (i1, . . . , id) ∈ Nd, and consider projections πj : Nd → Nd−1 for j ∈
{1, . . . , d} defined as

πj(i1, . . . , id) = (i1, . . . , ij−1, ij+1, . . . , id),

then the cardinality of V is bounded by,

|V | ≤
d∏
j=1

|πj(V )|1/(d−1).

Theorem 5.2. For 2 ≤ d, q � n, the minimum 1
q -balanced cut of a d-dimensional lattice hypergraph H = (V,E) is of size εq(H) =

Ω(nd−1/q(d−1)/d).

Proof. We prove Theorem 5.2 by induction on the dimension, d. In the base case d = 2, we must show that εq(H) = Ω(n/
√
q).

Consider any 1
q -balanced cut Q ⊂ E, which splits the vertices into two disjoint sets V1 and V2. Note that in 2 dimensions, every pair of

hyperedges overlaps, i.e., for i1, i2 ∈ {1, . . . , n} with i1 < i2, ei1 ∩ ei2 = {vi1,i2}. If the first partition, V1, has an internal hyperedge,
then since every pair of hyperedges overlaps, V1 is adjacent to all hyperedges inH . Therefore, every hyperedge adjacent to the other part
V2 ⊂ V must be in the cut, Q. On the other hand, if V1 has no internal hyperedges, then all hyperedges adjacent to V1 must connect both
parts, and thus are cut. So, without loss of generality we will assume that V2 is disconnected after the cut. We now argue that Ω(n/

√
q)

hyperedges must be cut to disconnect V2.
Since the cut is 1

q -balanced, we know that |V2| ≥ n(n− 1)/(2q). To disconnect each vi1,i2 ∈ V2, both adjacent hyperedges (ei1 and
ei2 ) must be cut. We can bound from below the cut size by first obtaining a lower bound on the product of the sizes of the projections
π1(vi1,i2) = i2 and π2(vi1,i2) = i1 via the Loomis-Whitney inequality (Theorem 5.1),

|π1(V2)| · |π2(V2)| ≥ |V2| ≥ n(n− 1)/(2q),

and then concluding

εq(H) = |π1(V2) ∪ π2(V2)|

εq(H) ≥ 1

2
(|π1(V2)|+ |π2(V2)|)

≥
√
|π1(V2)| · |π2(V2)| ≥

√
n(n− 1)/(2q)

= Ω (n/
√
q) ,
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since the size of the union of the two projections equals the number of hyperedges that must be cut to disconnect V2.
For the inductive step, we assume that the theorem holds for dimension d − 1 and prove that it must also hold for dimension d,

where d ≥ 3. In d dimensions, we define a hyperplane xk1,...,kd−2
for each {k1, . . . , kd−2} ∈ {1, . . . , n}d−2 with k1 < · · · < kd−2

as the set of all hyperedges ej1,...,jd−1
which satisfy {k1, . . . , kd−2} ⊂ {j1, . . . , jd−1}. Thus, each of the |X| =

(
n
d−2

)
hyperplanes

contains n− (d−2) hyperedges, and each hyperedge is in d−1 hyperplanes. Note that each hyperplane shares a unique hyperedge with
(d−2)(n− (d−2)) other hyperplanes. Further, each hyperedge in a hyperplane intersects each other hyperedge in the same hyperplane
in a unique vertex, and the set of all these vertices are precisely those sharing the d− 2 indices defining the hyperplane.

Consider any 1
q -balanced hypergraph edge cut Q ⊂ E. Since all hyperedges which contain vertices in both V1 and V2 must be part

of the cut Q, all vertices are either disconnected completely by the cut or remain in hyperedges which are all internal to either V1 or V2.
Let U1 ⊂ V1 be the vertices contained in a hyperedge internal to V1 and let U2 ⊂ V2 be the vertices contained in a hyperedge internal to
V2. Since both V1 and V2 contain bnd/qc vertices, either bnd/2qc vertices must be in internal hyperedges within both V1 as well as V2,
that is,

case (i): |U1| ≥ bnd/2qc and |U2| ≥ bnd/2qc,

or there must be bnd/2qc vertices that are disconnected completely by the cut,

case (ii): |(V1 \ U1) ∪ (V2 \ U2)| ≥ bnd/2qc.

In case (i), since both U1 and U2 have at least bnd/2qc vertices, we know that there are at least |U1|/(n − (d − 1)) ≥ bnd−1/2qc
hypergraph edges W1 which are internal to V1 after the cut Q, and a similar set of hyperedges W2 internal to V2. We now obtain a lower
bound on the size of the cut Q for this case by counting the hyperplanes which Q must contain. Our argument relies on the idea that if
two hypergraph edges are in the same hyperplane, the entire hyperplane must be disconnected (all of its hyperedges must be part of the
cut Q) in order to disconnect the two edges. This allows us to bound the number of hyperplanes which must be disconnected in order
for W1 to be disconnected from W2.

We define a new (d − 1)-dimensional lattice hypergraph H ′ = (E,X), with vertices and hyperedges equal to the hyperedges and
hyperplanes of the original hypergraph H . The cut Q induces a 1

2q -balanced cut on H ′ since it creates two disconnected partitions of
hyperedges: W1 and W2, each of size bnd−1/2qc. We can assert a lower bound on the size of any 1

2q -balanced cut of H ′ by induction,

εq(H
′) = Ω

(
nd−2/(2q)

(d−2)/(d−1)
)

= Ω
(
nd−2/q(d−2)/(d−1)

)
.

This lower bound on cut size of H ′ yields a lower bound on the number of hyperplanes which must be cut to disconnect the hyperedges
into two balanced sets W1 and W2. Remembering that disconnecting each hyperplane requires cutting all of its internal n − (d − 2)
hyperedges (and also that each pair of hyperplanes overlap on at most one hyperedge), allows us to conclude that the number of
hyperedges cut (in Q) must be at least

εq(H) ≥ (n− (d− 2))

d− 1
εq(H

′) = Ω
(
nd−1/q(d−2)/(d−1)

)
.

The quantity on the right is always larger than the lower bound we are trying to prove, εq(H) = Ω(nd−1/q(d−1)/d), so the proof for this
case is complete.

In case (ii), we know that bnd/2qc vertices Ū ⊂ V are disconnected by the cut (before the cut, every vertex was adjacent to d
hyperedges). We define d projections,

πj(vi1,...,id) = (i1, . . . , ij−1, ij+1, . . . , id)

for j ∈ {1, . . . , d} corresponding to each of d hyperedges adjacent to vi1...id . We apply the Loomis-Whitney inequality (Theorem 5.1)
to obtain a lower bound on the product of the size of the projections,

d∏
j=1

|πj(Ū)|1/(d−1) ≥ |Ū | ≥ bnd/2qc,

and then conclude with a lower bound on the number of hyperedges in the cut of H ,

εq(H) ≥ |
d⋃
j=1

πj(Ū)| ≥ 1

d

d∑
j=1

|πj(Ū)| ≥ 1

d

d∏
j=1

|πj(Ū)|1/d

= Ω
((
nd/2q

)(d−1)/d
)

= Ω
(
nd−1/q(d−1)/d

)
,

where we discard the constant 1
d by applying our assumption that d� n. By induction, this lower bound holds for all 2 ≤ d� n.
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6 Applications
In this section, we apply the general theorems derived in the previous sections to obtain lower bounds on the costs associated with a few
specific numerical linear algebra algorithms. We treat the dependency graphs of the algorithms in a general manner by reducing them to
lattice hypergraphs.

Consider a dependency graph G = (V,E) and a partition {Ei} of its edge set E. Let Vi be all the vertices adjacent to the edge
partition Ei for each i (while {Ei} is a disjoint partition of E, {Vi} is not necessarily a disjoint partition of V ). We can define a
hypergraph H = (V,D) based on G, where in each hyperedge di ∈ D, every pair of vertices u, v ∈ di is connected in G via a path
consisting of edges in Ei. By defining H in this manner, any cut of C ⊂ E corresponds to a hypergraph cut of H with at most |C|
hyperedges, which may be obtained by cutting all hyperedges di ∈ D corresponding to parts Ei which contain cut edges, i.e., ∃e ∈ Ei
such that e ∈ C.

We will also employ hyperedges to obtain lower bounds on sets of vertices connected via arbitrary reduction (sum) trees. Any
reduction tree T = (R,E) which sums a set of vertices S ⊂ R must connect each pair of vertices in S. Therefore, we can define a
hypergraph edge corresponding to this reduction tree, which contains the edges in S (ignoring the intermediate vertices R \ S which
depend on the particular tree), with the edge partition corresponding to the hyperedge being E for any possible reduction tree T =
(R,E).

6.1 Triangular solve
First, we consider a parameterized family of dependency graphsGTRSV(n) associated with an algorithm for the triangular solve (TRSV)
operation. In TRSV, we are interested in computing a vector x of length n, given a dense nonsingular lower-triangular matrix L and a
vector y, satisfying

L · x = y,

i.e.,
∑i
j=1 Lij · xj = yi, for i ∈ {1, . . . , n}. A sequential TRSV implementation is given in Algorithm 1. For convenience, we

Algorithm 1 Triangular solve (TRSV) algorithm

x = TRSV(L,y, n)

1 for i = 1 to n
2 for j = 1 to i− 1
3 Zij = Lij · xj
4 xi =

(
yi −

∑i−1
j=1 Zij

)
/Lii

introduced the intermediate matrix Z (which need not be formed explicitly in practice), and corresponding intermediate ‘update’ vertices
{Zij : i, j ∈ {1, . . . , n}, j < i}. We see that the computation of Zij for i = {2, . . . , n} and some j < i depends on the computation of
xj , which in turn influences the computations of Zjk for all k < j.

6.1.1 Lower bounds

For fixed n, alternative orders exist for the summation on line 4, leading to multiple dependency graphs GTRSV(n). However, any
order of this summation must eventually combine all partial sums; therefore, the vertices corresponding to the computation of each
xi, i.e., Zij for all j ∈ {1, . . . , i − 1}, must be connected via some reduction tree. We will define a 2-dimensional lattice hypergraph
HTRSV = (VTRSV, ETRSV), which will allow us to obtain a communication lower bound for all possible orderings of this computation
(i.e., all possible GTRSV(n)), in which we will omit the output and input vertices (x and y),

VTRSV = {Zij : i, j ∈ {1, . . . , i− 1}, i > j} ,
ETRSV ={ei : i ∈ {1, . . . , n}} where

ei={Zij :j ∈ {1,. . ., i−1}}∪{Zki :k ∈ {i+1,. . ., n}} .

The hyperedges ETRSV can be enumerated with respect to the vector x or y; the ith hyperedge ei ∈ ETRSV includes all intermediate
values which are dependencies of xi (Zij for j ∈ {1, . . . , i − 1}) or dependent on xi (Zki for k ∈ {i + 1, . . . , n}). This hypergraph is
depicted in Figure 2.

Lemma 6.1. Any vertex separator of any dependency graph GTRSV(n) which subdivides the n(n − 1)/2 intermediate vertices Z into
two disjoint sets of size bn2/2qc where 2 ≤ q � n, must have size at least

χq(GTRSV(n)) = Ω (n/
√
q) .

Proof. Consider any vertex separator S on GTSRV(n) which subdivides Z into two sets of size bn2/2qc. Any graph GTRSV(n) may
contain vertices corresponding to x, Z or other intermediate vertices which are intermediate nodes in a reduction tree, whose sum
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Figure 2: Depiction of the hypergraphHTRSV along with the inputs and outputs; each line of a different color corresponds to a hyperedge.

contributes to xi for some i (including vertices from y does not affect the connectivity of vertices in Z). We now show that for
any such separator S there exists a hypergraph edge cut C on HTRSV that is at most twice the size. The inclusion of any vertex
Zij ∈ S, disconnects this vertex from the rest of the graph and does not disconnect any other path between two vertices in Z, since
such dependency paths all go through the reduction tree and x. For each such vertex (Zij ∈ S) we add edges ei and ej from ETRSV

into the cut C, which completely disconnects Zij from other vertices in Z in HTRSV. The inclusion of a separator vertex xi ∈ S,
disconnects all vertices which are dependencies of xi (Zij for j ∈ {1, . . . , i − 1}) from all vertices which are dependent on xi (Zki
for k ∈ {i + 1, . . . , n}). In this case, we add edge ei to C, which has the same effect on HTRSV of disconnecting all vertices in Z
dependent on xi from all of vertices which are dependencies of xi in Z. Lastly, for any vertices in S which are part of a reduction
tree that contributes to xi, we add the hyperedge ei to cut C, disconnecting all dependencies of xi from its dependants. Thus, C is a
hyperedge cut of HTRSV since each hyperedge in H corresponds to a unique partition of edges in GTRSV(n) (including edges in the
reduction trees), and we have disconnected all hyperedges corresponding to the set of edges in GTRSV(n) which were disconnected
by separator S. Therefore, since disconnecting the edges adjacent to S in GTRSV(n) broke all paths between some two partitions of
vertices, so must the hyperedge cut C in HTRSV.

Further, the cut C which we have thus constructed is at most twice the size of S, since we added at most two edges to C for each
vertex in S. By Theorem 5.2, any 1

q -balanced cut of a 2-dimensional lattice hypergraph is of size Ω(n/
√
q). Therefore, any vertex

separator must be of size at least χq(GTRSV(n)) = Ω(n/
√
q).

Theorem 6.2. Any parallelization of any dependency graphGTRSV(n) where two processors compute bn2/2qc elements of Z (for some
2 ≤ q � n) must incur a communication cost of

WTRSV = Ω (n/
√
q) .

Proof. Let G be any dependency graph GTRSV(n) for Algorithm 1. Every vertex in G that has an outgoing edge to a vertex computed
by a different processor (different color) must be communicated. Since two processors compute bn2/qc vertices of Z, the communicated
set can be bounded below by the size of a 1

q -balanced separator of Z within GTRSV. By application of Lemma 6.1, the size of any such
separator is at least Ω(n/

√
q).

Theorem 6.3. Any parallelization of any dependency graph GTRSV(n) where two of p processors compute bn2/2pc elements of Z
incurs the following computation (F ), bandwidth (W ), and latency (S) costs, for some b ∈ [1, n],

FTRSV = Ω (n · b) , WTRSV = Ω (n) , STRSV = Ω (n/b) ,

and furthermore,
FTRSV · STRSV = Ω

(
n2
)
.

Proof. Let G be any dependency graph GTRSV(n) for Algorithm 1. We note that the computation of xi for i ∈ {1, . . . , n} requires
the computation of Zjk for j, k ∈ {1, . . . , i} with k < j. Furthermore, no element Zlm for l,m ∈ {i + 1, . . . , n} with l < m may
be computed until xi is computed. Consider any subpath R ⊂ P of the dependency path P = {x1, . . . , xn}. We recall that the
bubble β(G,R) = (Vβ , Eβ) around R is the set of all computations that depend on an element of R or influence an element of R.
Evidently, ifR = {xi, . . . , xj}, the bubble includes vertices corresponding to a subtriangle of Z, namely, Zkl ∈ Vβ for k, l ∈ {i, . . . , j}
with l < k. Therefore, β(G,R) is isomorphic to GTRSV(|R|), which implies that |Vβ | = Θ(|R|2) and by Lemma 6.1, we have
χq(β(G,R)) = Ω(|R|/√q). Since the bubbles for TRSV are 2-dimensional we apply Corollary 4.2 with d = 2 to obtain, for some
b ∈ [1, n],

FTRSV = Ω (n · b) , WTRSV = Ω (n) , STRSV = Ω (n/b) .

6.1.2 Attainability

The lower bounds presented above for triangular solve, are attained by the communication-efficient execution blocking schedule sug-
gested in Papadimitriou and Ullman [17]. Algorithm 2 below uses this blocking schedule with blocking factor b to compute the
triangular solve. Our algorithm is similar to the wavefront algorithm given by Heath et al. [11].

The parallel Algorithm 2 can be executed using p = n/b processors. Let processor pl for l ∈ {1, . . . , n/b} initially own Lij , yj for
i ∈ {1, . . . , n}, j ∈ {(l − 1)b + 1, . . . , lb}. Processor pl performs parallel loop iteration l at each step of Algorithm 2. Since it owns
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Algorithm 2 Parallel triangular solve (TRSV) algorithm

x = TRSV(L,y, n)

1 x = y
2 for k = 1 to n/b
3 // Each processor pl executes a unique iteration of below loop
4 parallel for l = max(1, 2k − n/b) to k
5 if l > 1
6 Receive length b vector x[(2k − l − 1)b+ 1 : (2k − l)b] from processor pl−1

7 for i = (2k − l − 1)b+ 1 to (2k − l)b
8 for j = (l − 1)b+ 1 to min(i− 1, lb)
9 xi = (xi − Lij · xj)

10 if k = l
11 xi = xi/Lii
12 if l < n/b
13 Send length b vector x[(2k − l − 1)b+ 1 : (2k − l)b] to processor pl+1

14 parallel for l = max(1, 2k + 1− n/b) to k
15 if l > 1
16 Receive length b vector x[(2k − l)b+ 1 : (2k − l + 1)b] from processor pl−1

17 for i = (2k − l)b+ 1 to (2k − l + 1)b
18 for j = (l − 1)b+ 1 to lb
19 xi = (xi − Lij · xj)
20 if l < n/b
21 Send length b vector x[(2k − l)b+ 1 : (2k − l + 1)b] to processor pl+1

the necessary panel of L and vector part xj , no communication is required outside the vector send/receive calls listed in the code. So at
each iteration of the outer loop at least one processor performs O(b2) work, and 2b data is sent, requiring 2 messages. Therefore, this
algorithm achieves the following costs,

FTRSV = O(nb), WTRSV = O(n), STRSV = O(n/b),

which attains our communication lower bounds in Theorems 6.2 and 6.3 for any b ∈ {1, n}. Parallel TRSV algorithms in current numer-
ical libraries such as Elemental [18] and ScaLAPACK [6] employ algorithms that attain our lower bound, modulo an extra O(log(p))
factor on the latency cost, due to their use of collectives for communication rather than the point-to-point communication in our wave-
front TRSV algorithm.

6.2 Gaussian elimination
In this section, we show that the Gaussian elimination algorithm has 3-dimensional bubble-growth and dependency graphs which satisfy
the path expansion properties necessary for the application of Corollary 4.2 with d = 3. We consider factorization of a symmetric
matrix via Cholesky, as well as Gaussian elimination of a dense nonsymmetric matrix. We show that these factorizations of n-by-n
matrices form an intermediate 3D tensor Z such that Zijk ∈ Z for i > j > k ∈ {1, . . . , n} and Zijk is dependent on each Zlmn
for l > m > n ∈ {1, . . . j − 1}. We assume that a fast matrix multiplication algorithm is not used, though we conjecture that our
analysis can be extended to account for potential use of Strassen’s matrix multiplication algorithm and likely other fast algorithms for
multiplication.

6.2.1 Cholesky factorization

The Cholesky factorization of a symmetric positive definite matrix A is

A = L · LT ,

for a lower-triangular matrix L. A simple sequential algorithm for Cholesky factorization is given in Algorithm 3. We introduced an
intermediate tensor Z, whose elements must be computed during any execution of the Cholesky algorithm (although Z itself need not be
stored explicitly in an actual implementation). We note that the Floyd-Warshall [10, 25] all-pairs shortest-path graph algorithm has the
same dependency structure as Cholesky for undirected graphs (and Gaussian Elimination for directed graphs), so our lower bounds may
be easily extended to this case. However, interestingly our lower bounds for this graph algorithm are not valid for the all-pairs shortest-
paths problem in general, which may alternatively be solved via path-doubling (a technique which naively incurs an extra computational
cost, but may be augmented to have the same asymptotic costs as matrix multiplication, as shown by Tiskin [23]).
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Algorithm 3 Cholesky factorization algorithm

L = CHOLESKY(A, n)

1 for j = 1 to n

2 Ljj =
√
Aij −

∑j−1
k=1 Ljk · Ljk

3 for i = j + 1 to n
4 for k = 1 to j − 1
5 Zijk = Lik · Ljk
6 Lij = (Aij −

∑j−1
k=1 Zijk)/Ljj

6.2.2 LU factorization

The LU factorization of a square matrix A is
A = L ·U,

for a lower-triangular matrix L and a unit-diagonal upper triangular matrix U (we make U rather than L have a unit-diagonal for
notational convenience). A simple non-pivoted algorithm for LU factorization is given in Algorithm 4. Within the computation of

Algorithm 4 LU factorization algorithm

L,U = LU(A, n)

1 for j = 1 to n
2 for i = 1 to j − 1
3 for k = 1 to i− 1
4 Z̄jik = Lik · Ukj
5 Uij = Aij −

∑i−1
k=1 Z̄jik

6 Ljj = Aij −
∑j−1
k=1 Ljk · Ukj

7 for i = j + 1 to n
8 for k = 1 to j
9 Zijk = Lik · Ukj

10 Lij = (Aij −
∑j−1
k=1 Zijk)/Ljj

LU factorization, the n3/6 intermediate vertices in Z within Algorithm 4 are analogous to the intermediate vertices of the Cholesky
computation of the previous section. The vertices designated as Z̄ in the LU computation are ignored in our further analysis. Ignoring
vertices does not invalidate our lower bounds because they can only necessitate more work and communication.

6.2.3 Lower bounds

We note that the summations on lines 2 and 6 of Algorithm 3 as well as lines 6 and 10 of Algorithm 4 can be computed via any
summation order (and will be computed in different orders in different parallel algorithms). This implies that the summed vertices
are connected in any dependency graph GGE(n), but the connectivity structure may be different. We define a 3-dimensional lattice
hypergraph HGE = (VGE, EGE) for the algorithm which allows us to obtain a lower bound for any possible summation order, as

VGE ={Zijk : i, j, k ∈ {1, . . . , n}, i > j > k},
EGE ={ei,j : i, j ∈ {1, . . . , n} with i > j} where

ei,j = {Zijk : k ∈ {1, . . . , j − 1}} ∪ {Zikj : k ∈ {j + 1, . . . , i− 1}} ∪ {Zkij : k ∈ {i+ 1, . . . , n}}

Figure 3(a) displays the intermediate vertices of HGE(16). We enumerate the set of hyperedges EGE via elements ei,j ∈ EGE,
i, j ∈ {1, . . . , n} with i > j.

Lemma 6.4. Any vertex separator S within dependency graph GGE(n) that subdivides the intermediate vertices Z into two sets of size
at least bn3/3qc (where 2 ≤ q � n) must have size at least

χq(GGE(n)) = Ω
(
n2/q2/3

)
.

Proof. We show that for any such separator S in GGE, it is possible to construct a hyperedge cut C of HGE which consists of at most
3|S| hyperedges. The separator S may include vertices in Z, in L, or in a reduction tree that contributes to an entry in L. In the first
case, if S includes an entry Zijk, then this entry is disconnected entirely from the graph, while the connectivity of other vertices in Z is
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(a) (b)

Figure 3: These diagrams show (a) the vertices Zijk in VGE with n = 16 and (b) the hyperplane x12 and hyperedge e12,6 on HGE.

not affected. For each such entry Zijk ∈ S we add edges ei,j , ei,k and ej,k to C, effectively disconnecting Zijk within the hypergraph
HGE. In the latter two cases, if S includes entry Lij or an entry to a reduction tree that contributes to Lij , we add edge ei,j to C.
Including the entry Lij or a intermediate in a reduction tree which contributes to it disconnects vertices which are dependent on Lij
from the dependencies thereof. These dependencies are encoded in the hypergraph HGE by the edge ei,j , the removal of which serves
to break all possible paths that could have gone through Lij or the reduction tree in HGE. Now we ascertain that C is a hyperedge cut
of HGE since each hyperedge in H corresponds to a unique partition of edges in GGE(n) (including edges in the reduction trees), and
we have disconnected all hyperedges corresponding to the set of edges in GGE(n) which were disconnected by separator S. Therefore,
since disconnecting the edges adjacent to S broke all paths between some two partitions of vertices in GGE(n), the hyperedge cut C
must disconnect the same partitions in HGE.

For each vertex in S, we have added at most 3 edges to the hyperedge cut C, and have disconnected the same or larger sets of vertices
within the hypergraph in each case. By Theorem 5.2, a 1

q -balanced cut of the vertices Z in HGE is of size Ω(n2/q2/3). Therefore, any
vertex separator on a GGE(n) must be of size at least χq(GGE(n)) = Ω(n2/q2/3).

Theorem 6.5. Any parallelization of any dependency graphGGE(n), where two processors each compute bn3/3qc elements of Z (VGE),
must incur a communication of

WGE = Ω
(
n2/q2/3

)
.

Proof. For any GGE(n), every vertex that has an outgoing edge to a vertex computed by a different processor (different color) must be
communicated. Since two processors each compute bn3/3qc elements of Z, the communicated set can be bounded below by the size of
a 1
q -balanced separator of the vertices Z in GGE(n). By Lemma 6.4, the size of any such separator is Ω(n2/q2/3).

Theorem 6.6. Any parallelization of any dependency graphGGE(n) in which two of p processors compute bn3/3pc vertices of Z incurs
the following computation (F ), bandwidth (W ), and latency (S) costs, for some b ∈ [1, n],

FGE = Ω
(
n · b2

)
, WGE = Ω (n · b) , SGE = Ω (n/b) ,

and furthermore,
FGE · S2

GE = Ω
(
n3
)
, WGE · SGE = Ω

(
n2
)
.

Proof. Let G be a dependency graph of GGE(n). We note that the computation of Lii for i ∈ {1, . . . , n} requires the computation
of Zlmk for l,m, k ∈ {1, . . . , i} with l > m > k. Furthermore, no element Zsrt for s, r, t ∈ {i + 1, . . . , n} with s > r > t
can be computed until Lii is computed. Consider any subpath R ⊂ P of the dependency path P = {L11, . . . , Lnn}. Evidently, if
R = {Lii, . . . , Lj+1,j+1}, the bubble β(G,R) = (Vβ , Eβ) includes vertices corresponding to a subcube of Z, namely Zklm ∈ Vβ for
k, l,m ∈ {i, . . . , j} with k > l > m. Therefore, β(G,R) is isomorphic to GGE(|R|), which implies that |Vβ | = Θ(|R|3) and by
Lemma 6.4, we have χq(β(G,R)) = Θ(|R|2/q2/3). Since we have 3-dimensional bubbles with 2-dimensional cross-sections, we apply
Corollary 4.2 with d = 3 to obtain, for some b ∈ [1, n],

FGE = Ω
(
n · b2

)
, WGE = Ω (n · b) , SGE = Ω (n/b) .
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Figure 4: Depiction of the bubble (blue parallelogram) along a dependency path (red dashed path) within a Krylov basis computation on
a 1-dimensional mesh (2-point stencil). Edges within the bubble are colored according to the hypergraph edge to which they correspond.

6.2.4 Attainability

The lower bounds presented in the previous section are attained on p processors for b ≈ n/
√
p by ‘2D algorithms’, which utilize

a blocked matrix layout and are employed by most standard parallel libraries (including Elemental [18] and ScaLAPACK [6]). The
BSP [16] algorithms presented by Tiskin [16] for LU (without pivoting and with pairwise pivoting [21]) and QR factorization with
Givens rotations, match the lower bounds in Theorem 6.5 and Theorem 6.6 for any b ∈ [n/p2/3, n/

√
p]. Therefore, Tiskin’s algorithms

can lower the bandwidth cost with respect to 2D algorithms by a factor of up to p1/6, at the cost of raising latency by the same factor.
Similarly, 2.5D algorithms [20] for LU factorization without pivoting and with tournament pivoting [8] also lower bandwidth cost by
a factor of up to p1/6 by sacrificing latency cost. 2.5D algorithms are practical and can improve upon the performance of standard 2D
algorithms so long as the matrix is large enough to amortize synchronization overheads. Therefore, the latency-bandwidth trade-off is
of particular importance for this problem.

We note that the 3D parallel LU algorithm given by Irony and Toledo [12], a major motivation for some of the communication-
efficient algorithms in the last paragraph, is not optimal in our model, because it does not minimize bandwidth cost along the critical
path, but only communication volume. This suboptimality is justified by the more positive performance results for 2.5D algorithms
collected in [20] and [19], with respect to the performance observed by the LU implementation of Irony and Toledo [12].

6.3 Krylov basis computation
We consider the s-step Krylov subspace basis computation

x(l) = A · x(l−1),

for l ∈ {1, . . . , s} and x(0) given as input, where the graph of the symmetric sparse matrix A is a (2m+ 1)d-point stencil (with m ≥ 1),
i.e., d-dimensional n-by-· · · -by-n mesh T , and each entry in A represents an interaction between vertices vi1,...,id , wj1,...,jd ∈ T , such
that for k ∈ {1, . . . , d}, ik, jk ∈ {1, . . . , n}, |jk − ik| ≤ m. Thus, matrix A and vectors x(l), l ∈ {0, . . . , s}, have dimension nd,
and A has Θ(md) nonzeros per row/column. We note that the dependency structure of this computation is analogous to direct force
evaluation in particle simulations and the Ford-Fulkerson shortest-path algorithm, which may be expressed as sparse-matrix times vector
multiplication but on different algebraic semirings.

Theorem 6.7. Any parallel execution of an s-step Krylov subspace basis computation for a (2m + 1)d-point stencil, for m ≥ 1, on a
d-dimensional mesh with d� s, requires the following computational, bandwidth, and latency costs for some b ∈ {1, . . . s},

FKr = Ω
(
md·bd·s

)
,WKr = Ω

(
md·bd−1·s

)
, SKr = Ω (s/b) .

and furthermore,
FKr · SdKr = Ω

(
md · sd+1

)
, WKr · Sd−1

Kr = Ω
(
md · sd

)
.

Proof. In the following analysis, we will discard factors of d, as we assume d � s (d is a constant), which is reasonable for most
problems of interest (d ∈ {2, 3}), but some assumptions in this analysis may need to be revisited if more precise consideration of high-
dimensional meshes is desired. We let GKr = (VKr, EKr) be the dependency graph of the s-step Krylov subspace basis computation
defined above. We index the vertices VKr 3 vi1,...,id,l with d+ 1 coordinates, each corresponding to the computation of an intermediate
vector element x(l)

k for l ∈ {1, . . . , s} and k =
∑d
j=1 ijn

j−1 (this assumes the lexicographical ordering of {1, . . . , n}d). For each edge
(vi1,...,id , wj1,...,jd) in T and each l ∈ {1, . . . , s}, there is an edge (vi1,...,id,l−1, wj1,...,jd,l) in EKr.

Consider the following path P and any subpathR, where |R| = r ≥ 3,

P = {v1,...,1,1, . . . , v1,...,1,s}
P ⊃ R = {v1,...,1,h+1, . . . , v1,...,1,h+r} .
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The dependency bubble β(GKr,R) = (Vβ , Eβ) includes

Vβ =
{
vi1,...,id,id+1

:ij ≤ m ·min(id+1 − h− 1, h+ r − id+1), j ∈ {1, . . . , d},
h+ 1 ≤ id+1 ≤ h+ r

}
.

For each (u1, . . . , ud+1) ∈ {1, . . . , r − 2}d+1 we define the block

Bu1,...,ud+1
=
{
vi1,...,id+1

∈ Vβ :ij ∈ {dm/2e(uj − 1) + 1, . . . , dm/2euj)}, j ∈ {1, . . . , d},
id=1 = ud+1 + h+ 1

}
.

Thus, each block should contain dm/2ed vertices on the same level, ud+1. We note that because the breadth of the blocks is dm/2e and
the interaction distance (stencil radius) is m, every vertex in Bu1,...,uj ,...,ud+1

depends on every vertex in Bu1,...,uj−1,...,ud+1−1 for each
j ∈ {1, . . . , d}, as well as on vertices Bu1,...,uj ,...,ud+1−1.

We now construct a graph G′Kr = (V ′Kr, E
′
Kr) corresponding to the connectivity of the blocks within the given bubble β(GKr,R),

enumerating them on a lattice of breadth g = b(r− 2)/(d+ 1)c. For each (u1, . . . , ud+1) ∈ {1, . . . , g}d+1, we have wu1,...,ud+1
∈ V ′Kr

corresponding to block Bu1,...,ud,t ⊂ VKr with t =
∑d+1
j=1 uj . Each vertex wi1,...,id+1

is connected to vertices wi1,...,ij+1,...,id+1
, for

j ∈ {1, . . . , d+ 1}, by edges in E′Kr. A representative bubble is shown for d = 1 in Figure 4, where it is evident that the bubble vertices
can be enumerated on a skewed lattice as above.

We transformG′Kr into a hypergraphH = (VH , EH), so that for q � s a 1
q -balanced separator ofG′Kr is proportional to a 1

q -balanced
hyperedge cut of H . We define VH = {wi1,...,id+1

∈ V ′Kr : i1 < i2 < · · · < id+1}, and the hyperedges EH correspond to unions of
vertices adjacent to disjoint subsets of edges in G′Kr. In particular, we define hyperedges ei1,...,id ∈ EH for i1, . . . , id ∈ {1, . . . , g}
with i1 < · · · < id, to contain all wj1,...,jd+1

which satisfy j1 < · · · < jd+1 and {i1, . . . , id} ⊂ {j1, . . . , jd+1}. We can form these
hyperedges as unions of edges in G′Kr,

ei1,...,id ⊂
i1−1⋃
k=1

(wk,i1,...,id , wk+1,i1,...,id) ∪
i2−1⋃
k=i1

(wi1,k,i2...,id , wi1,k+1,i2,...,id) ∪ . . . ∪
g−1⋃
k=id

(wi1,...,id,k, wi1,...,id,k+1)

where each pair of vertices in the union corresponds to a unique edge in G′Kr. Because these hypergraph edges correspond to disjoint
subsets of E′Kr, any vertex separator of G′Kr can be transformed into a hyperedge cut C of H of the same size or less formed by taking
the hypergraph edges in H to which the vertices in the separator are adjacent to. Further, any such 1

q -balanced separator of G′Kr cannot
be smaller than 1

d+1 |C| because each vertex is adjacent to no more than d+ 1 edges.
We note that the hypergraph H is a lattice hypergraph of dimension d + 1 and breadth g = b(|R| − 2)/(d + 1)c. By Theorem 5.2,

its 1
q -balanced hyperedge cut has size |C| ≥ εq(H) = Ω(gd/qd/(d+1)). Furthermore, since the 1

q -balanced separator of β(G′Kr,R) is at
least 1

d+1 |C|

χq(β(G′Kr,R)) = Ω

(
gd

(d+ 1)qd/(d+1)

)
= Ω(|R|d),

where the last bound follows since we have d, q � s.
This lower bound on edge cut size in the block graph G′Kr allows us to obtain a lower bound on the size of any 1

q -balanced separator
of GKr, that is larger by a factor of Ω(md). Consider any 1

q -balanced separator of GKr that separates the vertices into three disjoint
subsets, the separatorQ, and the parts V1 and V2. If two vertices u, v ∈ VKr are in two different partitions (are of different color), u ∈ V1

and v ∈ V2, and are in the same block, all vertices in the d adjacent blocks must have all their vertices entirely in Q (since all vertices
in adjacent blocks in G′Kr are adjacent to u and v in GKr). Therefore, the number of blocks which contain vertices of different color
is less than |Q|/md and therefore small with respect to |V ′Kr|/q. Therefore, Q should yield Ω(|V ′Kr|/q) blocks which contain vertices
that are either in the separator or in V1 and similarly for V2. Now, since two blocks B1 ⊂ (V1 ∪Q) and B2 ⊂ (V2 ∪Q) which contain
non-separator vertices of different color may not be adjacent, there must exist a separator block B3 ⊂ Q for any path on the lattice
between B1 and B2. Therefore, Q also induces a separator of G′Kr of size no larger than |Q| · dm/2ed. So, we obtain the following
lower bound on the size of a separator of GKr: χq(β(GKr,R)) = Ω(md · χq(β(G′Kr,R))) = Ω(md|R|d).

Now, the bubble size is |Vβ | = Ω(md|R|d+1) and the total length of our main dependency path is |P| = s. By Definition 4.1, GKr

is a (ε, σ)-path-expander with ε(b) = mdbd and σ(b) = mdbd+1. Therefore, by application of Theorem 4.1, with k = 3, we obtain the
following lower bounds, for some b ∈ [3, s],

FKr = Ω
(
md·bd·s

)
,WKr = Ω

(
md·bd−1·s

)
, SKr = Ω (s/b) .

6.3.1 Attainability

A parallel communication-avoiding algorithm for computing a Krylov subspace basis, termed ‘PA1’, is presented in [9]. We note that
although PA1 performs redundant computation to lower the parallel latency, the amount of redundant work and reduction in messages
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made possible by redundant work are not asymptotically significant, and thus the lower bounds of Theorem 6.7 apply. Computing an
s-step Krylov subspace basis with a (2m + 1)d-point stencil with block size b ∈ {1, . . . s} can be accomplished by s/b invocations of
PA1 with basis size parameter b. The costs for the overall computation using PA1 are then

FKr =
s

b
·O(bd+1md) = O(md · bd · s),

WKr =
s

b
·O(bdmd) = O(md · bd−1 · s),

SKr =
s

b
·O(1) = O(s/b),

under the assumption n/p1/d = O(bm). This algorithm therefore attains the lower bounds and lower bound tradeoffs of Theorem 6.7.

7 Conclusion
Our lower bounds showed that many numerical problems which have lattice dependency structure, require execution costs which are
independent of the number of processors but dependent on the problem size. Architecturally, our results provided lower bounds on
execution time, as a function of synchronization latency (α), communication throughput (β), and clock-speed (γ). The tradeoffs we
derive describe the strong scaling limit of Gaussian Elimination and Krylov basis computation in terms of these three quantities. In other
words, we obtained bounds on the time it takes for any number of processors to solve a system of linear equations via certain numerical
algorithms based on the network and clock speed of each processor. An interesting piece of future work will be to consider Krylov basis
computations, which are analogous to the Ford-Fulkerson single-source shortest-paths graph algorithm, on graphs such as expanders and
binary trees rather than just stencils (grids), which our graph-based bubble-expansion formulation should allow.
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